Magnetic Bearing Rotordynamic System Optimization Using Multi-Objective Genetic Algorithms
نویسندگان
چکیده
Multiple objective genetic algorithms (MOGAs) simultaneously optimize a control law and geometrical features of a set of homopolar magnetic bearings (HOMB) supporting a generic flexible, spinning shaft. The minimization objectives include shaft dynamic response (vibration), actuator mass and total actuator power losses. Levitation of the spinning rotor and dynamic stability are constraint conditions for the control law search. Nonlinearities include magnetic flux saturation, and current and voltage limits. Pareto frontiers were applied to identify the best-compromised solution. Mass and vibration reductions improve with a two control law approach. [DOI: 10.1115/1.4028401]
منابع مشابه
Satellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملMulti-objective optimization of nanofluid flow in microchannel heat sinks with triangular ribs using CFD and genetic algorithms
Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملTuning of Fractional PID Controllers Using Adaptive Genetic Algorithm for Active Magnetic Bearing System
This paper proposes a novel adaptive genetic algorithm (AGA) for the multi-objective optimization design of a fractional PID controller and applies it to the control of an active magnetic bearing (AMB) system. Different from PID controllers with three constants, the fractional PID controller’s parameters are composed of proportional constant, integral constant, derivative constant, derivative o...
متن کامل